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1. Introduction 

Diffusion of a soluble gas through a membrane is an 
important process that has been studied by using 
an electrochemical method [1-4]. To analyse such 
systems and estimate the diffusion coefficient, D, and 
solubility, co, a one-dimensional form of Fick's second 
law of diffusion is used 

~2 c(x, t) Oc(x, t) = D (1) 
Ot Ox 2 

where c(x, t) represents the concentration of the dif- 
fusing species and its diffusion coefficient, D, is 
assumed to be constant. The initial condition and the 
boundary conditions are 

c ( x , t )  -- 0 f o r 0  < x < L f o r t  = 0 (2) 

c (x , t )  = 0 a t x  = 0 f o r t  /> 0 (3) 

c (x , t )  = c o a t X  = L f o r t  /> 0 (4) 

The reaction current at the membrane surface is 
defined as 

ac(x, t) 
i(t) = nFAD ax x:0 (5) 

and the steady state limiting current is 

nFADc o 
i~o = L (6) 

where n is the number of electrons transferred in the 
reaction occurring at the membrane surface; A is the 
area of the membrane; L is the thickness of the 
membrane; and F is the Faraday constant. 

2. Existing solution approximations 

Several authors have attempted to approximate the 
solution of Equations 1-4 to evaluate the current 
ratio, i(z)/io~ by using Equations 5 and 6. McBreen 
et aI. [2] obtained the following expressions using 
the Laplace transformation and Fourier methods, 
respectively: 

i~ - x/(~z) exp 

i (0  
= 1 -- 2exp(--rc2~) 

where 

(7) 

z = D t /L  z (8) 

Recently Yeh and Shih [4] presented another solution: 

i(z) 
= 1 - e x p ( - 6 0  (9) 

iv 

These expressions were obtained by truncating after 
the first term of the infinite series of the analytical 
solution presented by the authors. All of these 
equations are approximate formulae for the current 
ratio; therefore, they are not accurate over the entire 
range of time as demonstrated by Kimble et al. [4]. 
The infinite series solution presented by McBreen 
et al. [2] is the following: 

i(~) 2 ~ ( _ l ) ~ e x p l  ( 2 n +  1) 2 ] 
i~ = x/(~v),=0 4r (10) 

Unfortunately, Equation 10 is not correct as can be 
seen in Fig. 1 which shows that Equation 10 does not 
yield the correct current ratio for long times (r > 0.3) 
regardless of the number of terms included in the 
infinite series in Equation 10. The reason for this is 
that the ( -  1)" multiplier in Equation 10 is incorrect, 
as shown below. 

3. Solution procedures 

Two different solution procedures are presented here 
to obtain a solution to the above equations. The first 
is the Laplace transformation method and the second 
is the separation of variables. 

3.1. Laplace transformation 

Performing the Laplace transformation on the dif- 
fusion equation in Equation 1 and the boundary con- 
ditions in Equations 3 and 4 gives 

d2?(x, s) s 
dx 2 D 3(x, s) = 0 (11) 

g(0, s) = 0 (12) 

~(L, s) = Co/S (13) 

where g(x, s) = L[c(x, t)] is the concentration of the 
diffusing species in the Laplace domain, s is the La- 
place transform parameter. The general solution of 
Equation 11 is 

e(x, s) = A sinh [xx/(s/D)] + B cosh [xx/(s/D)] 

(14) 

Application of the boundary conditions, Equations 12 
and 13, yields 

CO 
A = 

s sinh [Lx/(s/D)] 

therefore 

and B = 0 (15) 

O(x, s) = Co sinh [xx/s/D)] (16) 
s sinh [Lx/(s/D)] 

770 0021-891X/92 �9 1992 Chapman & Hall 



SHORT COMMUNICATION 771 

1 . 3  . . . .  , . . . .  , . . . .  , . . . .  , . . . .  

1 . i  

0 .9 

3 

,(2_" 0 .7  

0.5 
L 

O 

0.3 

0.1 

- 0 . 1  
0.0 

/ 
[ I I * I I L f L p [  l l t P I t r j  

0 .2  0 .4  0.6 0 .8  1.0 

Dimensionless time, 7; 

Fig. 1. The i(z)/i~o ratio using the McBreen et al. solution ( . . . .  ) 
(Equation 10) and analytical approaches by Laplacian transform 
( ) (Equations 23 and 25) compared with a numerical solution 
using a three point finite difference method (A). 

which can be written as 

e(x, s) = co 
S 

exp [ -x / (s /D)(L - x)] - exp [ -x / (s /D)(L + x)] 
X 

l - exp [ -  2L~/(s/D)] 

By using a Taylor series 

1 
1 - -  X ~ = o  

Equation 17 becomes 

e(x, s) 

o r  

(17) 

for Ixl < 1 (18) 

Co {exp [ -x / ( s /D) (L  - x)] 
S 

- exp [--~/(s/D)(L + x)]} 

x ~ exp [-2nLx/(s/D)] 
n=0 

(19) 

8(x, s) = co ~ {exp [-~/(s/D)((2n + 1)L - x)] 
S n=0 

- exp [-x/(s/D)((Zn + 1)L + x)]} (20) 

Performing an inverse Laplace transformation of  
Equation 20, one obtains -x] 

,=0 2x/(Dt) 

,=0 2x/(Dt) (21) 

and, correspondingly, the derivative of  Equation 21 
with respect to x is 

8 c  2c0 [ (2n + l)2L 2] 
Ox ~=0 - x/(D tn) n=0 ~ exp 4Dt  _] (22) 

Thus, the current ratio in this case is 

i ( t ) _  2 ~ e x p [  (2n+ 1)21 (23) 
io~ x/(~ "c) n=0 4"c 

Comparison of Equation 23 to Equation 10 shows 
that the ( -  1) ~ multiplier is not needed in Equation 10. 

An alternative method is to perform the inverse 
Laplace transformation directly from Equation 16 [5] 

c ( x ,  t)  = co + -  - 
TCn= 1 F/ 

The current ratio obtained by using Equation 24 is 

i(~) 
= 1 + 2 ~ ( - 1 )  nexp[-nz~z2~] (25) 

ic~ n= l 

It is worth noting that Equation 25 converges more 
rapidly than Equation 23 for long times. This feature 
maybe useful for data reduction. 

Also, it should be mentioned that Equation 24 can 
be obtained from Carslaw and Jaeger [6] with 2 = 0, 
q51 = 0, and q~2 = 1. 

3.2. Separation of  variables 

Equation 24 can also be obtained by using the method 
of separation of  variables with the solution being 
the sum of the non-homogeneous and homogeneous 
solutions. Let 

X 
u(x, t) = c(x, t) - -L Co (26) 

then Equations [1-4] become 

au(x,at t) = D 82u(X,ax 2 t)  (27) 

u ( x ,  t)  = 
X 
L c ~ 1 7 6  < x < L f o r t  = 0 (28) 

u(x,t) = 0 a t x  = 0 f o r t  >/ 0 (29) 

u(x,t) = 0 a t x  = L f o r t  ~> 0 (30) 

Assume that 

u(x, t) = f(t)g(x) 

Equation 27 becomes 

(31) 

i f ( t )  = D g"(x) = -- 2 (32) 
f ( t )  g(x) 

The general solutions to f ( t )  and g(x) are 

f (O = e -J' (33) 

g(x) = A sin (x((2/D)) + B cos (xx/Oo/D)) (34) 

Application of  boundary conditions in Equations 29 
and 30 yields B = 0 and 

n 2 a : 2 D  
A sin (L,/(2/D)) = 0 or 2 - L2 {135) 
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Then the solution to u(x,  t) is of  the form 

u(x,  t) = ,.., A ,  exp sin (36) 
n = l  

where A, is determined using the initial condition in 
Equation 28 

A, = L - z c 0  s i n -  dx (37) 

2 ( -  1)" 
An = - -  Co (38) 

nTz 

Combining Equations 26, 36, and 38, one can obtain 
the solution for c(x, t) as given by Equation 24. 

4. Results 

A comparison of Equations [10], [23], [25], and the 
solution computed numerically using a three point 
finite difference method is shown in Fig. 1. As expected, 
the solutions by the analytical methods (Equations 23 
and 25) coincide with the solution computed numeri- 
cally. However, as mentioned above, Equation 10 
deviates from the correct solution for z greater than 
about 0.3. 

5. Summary 

The analysis of  current-time data to determine the 

diffusion coefficient and the solubility of hydrogen 
diffusing through a membrane should be done using 
Equation 23 or Equation 25, but not Equation 10. The 
numerical method used by Kimble et al. [4] may be 
replaced by either Equation 23 or Equation 25 to 
reduce the computation time needed for data reduction. 

Acknowledgement 

The authors acknowledge gratefully that this work 
was supported by the Jet Propulsion Laboratory 
(JPL) under Contract No. 958344. 

References 

[1] M.A.V. Devanathan and Z. Stachurski, Proc. R. Soc., 
Edinburgh, Sect. A 270 (1962) 90. 

[2] J. McBreen, L. Nanis and W. Beck, J. Eleetrochem. Soc. 113 
(1966) 1218. 

[3] S.K. Yen and H. C. Shih, ibid. 135 (1988) 1169. 
[4] M.C. Kimble, Y. M. Tsou, R. N. Beaver and R. E. White, 

ibid, 137 (1990) 2510. 
[5] M.R. Spiegel, 'Mathematical Handbook of Formulas and 

Tables', McGraw-Hill, New York (1968) p. 171, 
[6] H.S. Carslaw and J. C. Jaeger, 'Conduction of Heat in 

Solids', 2nd ed., Oxford University Press, Oxford (1959) 
p. 103. 


